网上赌博注册链接-真人网上赌博在线网址

新聞中心

當(dāng)前您的位置: 首頁> 新聞中心> 學(xué)術(shù)講座> 正文

講準(zhǔn)字【2023】第107號:亞普朗克傳感的類壓縮態(tài)

發(fā)布時(shí)間:2023-05-17 瀏覽量:

講座報(bào)告主題:亞普朗克傳感的類壓縮態(tài)
專家姓名:Naeem Akhtar
日期:2023-05-20 時(shí)間:14:00
地點(diǎn):物理樓401
主辦單位:物理與電子工程學(xué)院


主講簡介:Naeem Akhtar have received my PhD degree from the University of Science and Technology of China (USTC) (Major: Physics, Quantum Information Physics) in 2021 under the supervision of Prof. Barry C. Sanders. Barry C. Sanders is the Professor in Physics and Director of the Institute for Quantum Science and Technology at the University of Calgary Canada, and Distinguished Chair Professor at University of Science and Technology Hefei China.研究專長:Theoretical study of non-classical quantum states related to the Heisenberg-Weyl, SU(2), and SU(1,1) groups, as well as their applications in metrology. Localization properties of particles in one-dimensional incommensurate lattices via Wigner function.


主講內(nèi)容簡介:海森堡原理指出,位置和動(dòng)量不確定性的乘積應(yīng)不小于普朗克常數(shù)設(shè)定的極限? /2.這通常被解釋為與亞普朗克尺度相關(guān)的相空間結(jié)構(gòu)不存在,或者不重要。然而,非局部量子疊加(或“薛定諤貓態(tài)”)被限制在以經(jīng)典作用a為特征的相空間體積內(nèi),遠(yuǎn)大于?, 在亞普朗克尺度上形成斑點(diǎn)結(jié)構(gòu)。這些亞普朗克尺度的相空間特征對于確定這些狀態(tài)對相空間位移的敏感性至關(guān)重要。我們在相空間中提出了另一組具有亞普朗克尺度結(jié)構(gòu)的類羅盤狀(四個(gè)相干態(tài)的疊加)態(tài),并研究了它們對位移(擾動(dòng))靈敏度的影響。為了構(gòu)建指南針,我們集中研究了海森堡-威爾、SU(2)和SU(1,1)對稱性。我們的研究包括對這種狀態(tài)的Wigner分析及其在計(jì)量學(xué)中的應(yīng)用,以及這種狀態(tài)的產(chǎn)生。


歡迎師生參加!

專家姓名 講座時(shí)間
講座地點(diǎn)
实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 松滋市| 金赞百家乐官网现金网| 太阳城百家乐出千技术| 百家乐园会员注册| 百家乐官网娱乐分析软件v| 百家乐代理博彩正网| 大发888更名网址6222| 百家乐筹码防伪| 永利百家乐官网游戏| 东海县| 圣淘沙百家乐官网现金网| 北京太阳城老年公寓| 易球百家乐娱乐城| 博彩百家乐字谜总汇二丹东| 大发888游戏下载中心| 百家乐官网网络公式| 百家乐体育宝贝| 大发体育网| 百家乐官网隐者博客| 百家乐下注所有组合| 明升网址 | 百家乐官网是个什么样的游戏| 澳门百家乐赌场娱乐网规则| 真人百家乐海立方| 威尼斯人娱乐城官网lm0| 真人百家乐官网网站接口| 百家乐赌法| 皇室百家乐官网娱乐城| 真人百家乐官网赌城| 百家乐高档筹码| 百家乐赢多少该止赢| 百家乐官网游戏台| 威尼斯人娱乐城佣金| 电脑百家乐官网的玩法技巧和规则| 百家乐好的平台| 巫山县| 百家乐制胜软件| 皇冠888线上投注| 试玩百家乐官网帐| 娱乐博彩|